Multi-Label Collective Classification

نویسندگان

  • Xiangnan Kong
  • Xiaoxiao Shi
  • Philip S. Yu
چکیده

Collective classification in relational data has become an important and active research topic in the last decade, where class labels for a group of linked instances are correlated and need to be predicted simultaneously. Collective classification has a wide variety of real world applications, e.g. hyperlinked document classification, social networks analysis and collaboration networks analysis. Current research on collective classification focuses on single-label settings, which assumes each instance can only be assigned with exactly one label among a finite set of candidate classes. However, in many real-world relational data, each instance can be assigned with a set of multiple labels simultaneously. In this paper, we study the problem of multi-label collective classification and propose a novel solution, called Icml (Iterative Classification of Multiple Labels), to effectively assign a set of multiple labels to each instance in the relational dataset. The proposed Icml model is able to capture the dependencies among the label sets for a group of related instances and the dependencies among the multiple labels within each label set simultaneously. Empirical studies on real-world tasks demonstrate that the proposed multi-label collective classification approach can effectively boost classification performances in multilabel relational datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Collective Annotation of Music from Multiple Semantic Categories

Music semantic annotation aims to automatically annotate a music signal with a set of semantic labels (words or tags). Existing methods on music semantic annotation usually take it as a multi-label binary classification problem, and model each semantic label individually while ignoring their relationships. However, there are usually strong correlations between some labels. Intuitively, investig...

متن کامل

Relational Learning for Collective Classification of Entities in Images

We consider the problem of discrete multi-label entity classification in images. We argue that the framework of Markov Logic can provide a unified, well-grounded mechanism to incorporate arbitrary logical relationships between entities to improve classification in images, and thus generalizes much of the recent work on exploiting local and global context in object recognition and scene understa...

متن کامل

A Threshold Based Multi-Label Classification

In classification problems, a pattern may belong to one or multiple categories. It is essential to deal multi-label classification accurately and efficiently. Threshold strategies can be used for multi-label classification. We propose four schemes to compute threshold for a threshold based multi-label classification. We validate our method using multi-label text data and multi-label image data....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011